
1 Graphs and Graph Signals 2

Graph signal processing (GSP), or signal processing on graphs, focuses on meth- 3

ods to analyze and process data associated to graphs. A graph consists of a series 4

nodes, whose relations are captured by edges. Two nodes are connected when 5

there exists an edge between them. This connection may represent an actual 6

physical connection (e.g., two nodes in a communication network connected by 7

a physical communication link) or some other property (e.g., two people con- 8

nected in a social network). In some cases, a (positive) weight is associated to an 9

edge so as to capture how strongly connected the two nodes are (larger weights 10

indicating stronger links). Then, a “graph signal” is a vector representing data, 11

with each entry corresponding to data value associated to one of the nodes. 12

(a)

(b)

x(k)

x(k)
x(k − 1) x(k + 1)

x(k − 1) x(k + 1)

Figure 1.1 Comparison of notions of variation and frequency in time and vertex
domain. The same signal is seen as (a) observations in time and (b) placed on a
graph. The signal in (a) can be viewed as being positioned on a line graph, while in
(b) we have an arbitrary graph.

Copyright c© 2018 Antonio Ortega

Draft version -- Compiled on 2018-07-02 02:29:01-07:00

4 Graphs and Graph Signals

Conventional signal processing is concerned with the development of models 13

and processing tools for signals that are defined in time (e.g., speech, audio) or 14

in space (e.g., images). A key concept in the development of signal processing 15

tools is that of frequency. An intuition about the frequency of a signal can 16

be reached by observing how quickly a signal changes from sample to sample. 17

This is illustrated by the example in Figure 1. Figure 1(a) represents a signal in 18

time. In order to evaluate its variation we can look at consecutive samples along 19

time. Notice that x(k) is quite different from both x(k + 1) and x(k − 1), and 20

so we can see that the local variation, and thus the local frequency, are high. In 21

other parts of this time signal variation is not as fast, and so the local frequency 22

is lower. This book will develop similar insights for graph signals, where rather 23

than consecutive samples in time, we will consider how much variation there is 24

the neighborhood of a node. Referring to Figure 1(b), we can see that nodes k, 25

k− 1, k+ 1 have the signal values, but now the connection between these nodes 26

and others are not so easy to explain. For example, node k is connected to two 27

other nodes, aside from k− 1 and k+ 1, and since these nodes have values closer 28

to x(k) the frequency of the signal on the graph of Figure 1(b) may be lower. 29

While definitions vary depending on the type of signal being considered (e.g., 30

continuous time vs discrete time, 1D vs 2D, etc), the main steps followed are 31

very similar: 32

• Define a series of elementary functions (bases) each of them having a different 33

frequency interpretation 34

• Develop tools so that each signal can be represented in a unique way based 35

on its frequency components. 36

• This will allow us to develop a language to characterize observed signals (e.g., 37

low frequency or smooth signals, who show a slow variation from node to 38

node). 39

• Design filters that can remove some of the frequencies from a specific signal 40

(e.g., remove higher frequencies in order to “denoise” the signal). 41

1

Example 1.1 Sensor network graph. Consider a set of sensors measuring 2

temperature inside a large factory. The goal is to analyze temperature mea- 3

surements so as to determine whether there may be problems with some of the 4

equipment. As an example, if some of the equipment is overheating this could 5

be observed through locally higher measurements. Discuss how a graph could be 6

constructed in order to achieve this goal, by associating one sensor (and sensor 7

measurement) to each node of the graph. 8

Solution 9

In this type of application, the goal is to detect an “anomaly”, by comparing 10

temperature in different parts of the factory floor, and detecting unexpected 11

behavior. As an example, this could be done by comparing each temperature 12

1.1 Graphs and graph signals 5

observation made by a sensor, to those made by other sensors nearby. The in- 13

tuition behind this is that we may not find surprising to measure very different 14

temperature values in areas far away, but if two sensors are nearby and temper- 15

ature is much higher in one, this could be an indication of equipment (or sensor) 16

malfunction. Thus, we can consider a graph where edges having weights that 17

are decreasing functions of the distance, and where only nodes close enough to 18

each other will be connected. A very simple detection strategy may then involve 19

comparing values (signal) at a node, to those in the immediate neighborhood. 20

21

One of the most appealing characteristics of graph signal processing is that it 22

provides a common framework to study systems that are fundamentally different 23

in their behavior and properties. The size of the graphs can vary significantly, 24

from a few hundreds of nodes (e.g., in a sensor network) to millions (e.g., an 25

online social network). Similarly, graph topologies can be very regular (any node 26

has the same number of connections) or highly irregular (some nodes have orders 27

of magnitude more connections than others). 28

Having a single set of mathematical tools to describe many different types 29

of graphs is appealing but also challenging: while the tools are the same, the 30

interpretation of the methods and the insights derived from their use are poten- 31

tially quite different from case to case, as a function of the graph characteristics. 32

Throughout this book, our goal will be to strike a balance between generality 33

and specific behavior, by describing the general ideas first and then explaining 34

how they apply to specific graphs. 35

This chapter provides examples of various scenarios where graphs can be used 36

to model systems of interest and uses these as motivation to explore graph signals 37

and graph signal processing. Some of these motivating scenarios will be used as 38

examples throughout the text. 1

1.1 Graphs and graph signals 2

1.1.1 Basic concepts 3

Graphs representations have long been used to provide information about objects 4

(concepts, locations, etc) and describe their relationships. Connections between 5

two nodes, A and B, can be very different in nature depending on the appli- 6

cation at hand. For example a connection could be used to describe that “A 7

is at certain distance of B” or that “B may happen if A happened” or simply 8

that “A and B are similar”. Graph representations are general. They provide a 9

common language and associated mathematical tools for very different problems 10

and applications. 11

More formally, we define graphs in terms of a set of vertices or nodes, V = 12

6 Graphs and Graph Signals

{v1, v2, . . . vN} or V = {1, 2, . . . , N}1 and a set of edges E = {e1, e2, . . . eM} or 13

E = {1, 2, . . . ,M}. We may also denote an edge as e = vivj if it connects vertices 14

i and j. The edges can be weighted or unweighted. Some graphs are directed: vivj 15

may exist, while vjvi does not. Others are undirected: vivj and vjvi both exist, 16

and if the graph is weighted both edges have the same weight. 17

In this book, theoretical concepts are introduced for general graphs, that is, 18

we will not make any assumptions about the number of vertices, the number of 19

edges per vertex, whether the graph is regular (i.e., all vertices have the same 20

degree), etc. Specific examples will then serve to provide insights about concepts, 21

and also to show the different types of graphs encountered in practice. 22

Each node i in a graph has a scalar value f(i) associated to it. The aggregation 23

of all these values into a vector of dimension |V| = N , f , will be called a graph 24

signal. Generalization to the case where vectors are associated to each node is 25

possible, but not explicitly considered here. For a given graph, there can be many 26

different graph signals. 27

28

Example 1.2 In the sensor network of Example 1.1, the same graph could have 29

both temperature and humidity signals. Similarly, the same set of sensors can 30

capture measurements at different times, leading to a time-varying graph signal. 31

32

Graph signal processing methods can be viewed in the context of data science 33

applications, where the goal is to extract useful information form data. To that 34

end, GSP methods lead to processing and analysis of data that takes into ac- 35

count the topology of the graph. In other words, a given graph signal f can be 36

interpreted in different ways depending on the graph it is associated with. 37

1

Example 1.3 In Example 1.1 assume that sensors are deployed inside a build- 2

ing. Then we will get a different analysis of the signal depending on whether the 3

graph is defined based on physical distances between sensors only or, instead, 4

weights take into account the presence of walls separating some sensor locations. 5

6

The key insight that GSP provides is based on capturing the variation of 7

signals across connected nodes. 8

9

Example 1.4 In Example 1.1, if two nodes i and j have very different tempera- 10

tures, this will mean different things depending on how strongly connected they 11

are. If the two nodes are strongly connected (e.g., they are close together), a 12

1 We will use the terms vertex and node interchangeably throughout this book.

1.1 Graphs and graph signals 7

big difference between f(i) and f(j) could be a clue to detect some unexpected 13

behavior (an overheating device in a room, say), whereas if the two nodes are not 14

connected, the prior information provided by the graph tells us that we should 15

not necessarily expect the temperature values to be similar (e.g., one sensor is 16

indoors, the other is outdoors). 17

18

This idea of quantifying the variation of signals across nodes will lead us to 19

introduce frequency representations for graph signals, where high frequency will 20

capture fast signal variation across connected nodes. This notion of frequency will 21

allow us to define tools to analyze, filter, transform and sample graph signals in 22

a way that takes into account signal variation on the graph. In terms that would 23

be familiar to a signal processing practitioner, we want the tools that will allow 24

us talk about “low pass” graph signals, with corresponding “low pass” filters. As 25

for the sampling problem, we would like to be able to define the required level 26

of “smoothness” a signal is required to have in order for it to be recovered from 27

a set of signal samples. 28

29

Example 1.5 Considering again Example 1.1, a low pass filter could be used 30

to reduce noise in the temperature measurements before processing them, while 31

sampling would allow us to decide which subset of sensors should be activated to 32

measure, in case we would increase battery life by not having all of them active 33

simultaneously. 34

35

There are many problems of practical interest in which graph-based approaches 36

can be pursued. In some cases the choice of graph is obvious given the application, 37

while in others choosing the “right” graph is key in achieving meaningful results. 38

We will discuss both types of scenarios, including techniques to optimize the 1

graph selection. 2

As we start providing examples of problems with corresponding graph rep- 3

resentations, it is important to keep in mind that different graphs can be 4

chosen to analyze a given dataset. This is an important choice to make, as 5

the choice of graph parameters affects the results. Moreover, we will be able to 6

develop frequency interpretations for any graph, but these interpretations 7

will not be unique. 8

1.1.2 Signals and Graph Signals 9

For any of these and other examples, we can define the graph signal as the 10

information associated to each of the vertices. Denote f(v) ∈ R the scalar signal 11

at vertex v ∈ V. Except where otherwise indicated we will focus on signals that 12

8 Graphs and Graph Signals

take a real scalar value at each vertex v. This could be generalized to scenario 13

where the signal at each vertex is complex, a vector, or a time series. 14

Note that when we consider graphs with N nodes we can combine all the f(v) 15

into a single vector f ∈ RN , so that we are essentially working with vectors in 16

RN . Thus it is worth asking why we could not simply work with f as a vector in 17

RN and apply existing methods from linear algebra to transform this vector. 18

First, for regular domain signals the sample indices are meaningful, e.g., in 19

the time domain sample x(n + 1) comes after sample x(n). For graph signals, 20

the indices associated to each vertex are arbitrary. Thus, for two nodes i and 21

j, the values i and j do not matter, what matters is whether there is an edge 22

between i and j. We can change the labels and still preserve the connectivity. 23

This will be a simple permutation of the adjacency matrix, as will be seen later. 24

In general, for a graph with arbitrary connectivity, there is no obvious way to 25

use a standard transform such as the DFT, given that there are many different 26

ways of mapping a graph signal into a 1D vector. 27

Second, the same signal may have very different interpretations depending on 28

how the vertices are connected. This is really the main motivation for graph 29

signal processing and can be illustrated with a simple example. 30

31

Example 1.6 Consider the two graphs G and G′ in Figures 1.2(a) and (b). The 32

same graph signal is associated to both graphs. For which of those two graphs 33

does the signal have higher variation? 34

Solution 35

Comparing Figures 1.2(a) and (b), we can observe that there are only two nodes 36

that negative values. Note that those two nodes have have only one connection to 37

others with positive values in Figure 1.2(a), while several such connection exist 38

in Figure 1.2(b). From this we may infer that the signal has higher frequency for 39

the graph of Figure 1.2(b). 40

41

We can easily see that when f is associated with G it exhibits much less 1

“variation” along the graph as compared to when it is associated with G′. As one 2

traverses G node by node from A to A′, f changes sign just once, between D and 3

D′, whereas the sign changes from vertex to vertex when we traverse G′ from A 4

to D′. We will later see that this intuition about variability within a graph can 5

be approached more formally and related to similar notions used for signals in 6

regular domains. 7

Example 1.6 also raises an important point: in many Graph Signal Processing 8

problems it will be necessary to choose the graph that is best suited for the specific 9

task. 10

As an example of how different connectivity can be incorporated into our 11

signal analysis, consider a social network, which we assume will collect, or infer, 12

1.1 Graphs and graph signals 9

(a)

(b)

Figure 1.2 The same graph signal is shown associated to two different graphs. Note
that how the nodes are connected affects how much variation we observe for the same
signal. For example, in (a) there are fewer connections between nodes having values
with opposite sign than in (b). This will be shown to indicate that the signal has
higher frequency in the graph of (b).

relevant user information (geographical location, age, occupation, perhaps even 13

income range). Analyzing this information, taking into account the connectivity 14

of the graph, would allow us to answer questions about how users relate to each 15

other. For example, if users of similar ages are likely to be “friends” in a given 1

social network, this could be noted by observing that the age signal is smooth 2

on the social network graph. 3

Similar kinds of assessments could be made about more complex signals, such 4

as information about user interests that could be derived from postings2 but the 5

insights will be the same. As an example, one could define a vector where each 6

entry represents a topic, and the corresponding numerical value is associated to 7

an estimated level of interest a user has on that topic. Essentially by observing 8

the variations across edges in the graph we will be able to infer characteristics 9

of datasets that would be difficult to visualize, given the complex connectiv- 10

ity of the graphs. This can be useful for analysis (is the graph signal varying 11

smoothly?), as well as for sampling and interpolation (what is a sufficient num- 12

2 For example, a bipartite graph where some vertices represent topics and others represent

users, with edges present if a user is interest in a topic

10 Graphs and Graph Signals

ber of measurements to capture in order to have to be able to reconstruct the 13

signal from the samples), denoising, etc. 14

In sensor networks samples are irregularly obtained within a spatial region, 15

and can be related to each other based on different graphs, with edge weights 16

and connectivity based on distance, radio connectivity, or some other side infor- 17

mation. 18

Here also, knowing the connectivity of the graph allows to process the corre- 19

sponding graph signal in different ways. For example, a graph based on distance 20

could be used in order to determine the best way to sample information (say, 21

temperature) across a set of sensors, knowing that it is likely to vary slowly 22

(smoothly) across the distance-based graph. 23

In what follows we present several examples of graphs and graph signals to 24

illustrate the diversity of cases we may encounter. These examples will be used 25

again in later chapters to provide more insights about the concepts we introduce. 26

For each of these examples we explain what the nodes and edges are and pro- 27

vide examples of graph signals of interest. We also include in our discussion the 28

degree distribution, i.e., how the number of edges or their weight of a node 29

(the degree) varies across the graph. Examples in this section are generated with 30

Matlab using the GraSP toolbox, which will be used throughout the book and 31

is introduced in more detail in Appendix A. Code used to generate many of the 32

figures in the book is available from the book webpage. 33

1.2 Graphs and classical signal processing 34

We start by introducing two graphs closely linked to familiar signal processing 35

problems, namely, line graphs and grid graphs. Frequency representations for 36

these graphs match exactly those available for some specific signals studied in 37

classical signal processing. 38

Line graphs, cycle graphs and discrete-time signals 39

Discrete (and finite length) time signals can be interpreted as graph signals, 40

where each sample in time corresponds to a node, and the edges between two 1

neighboring nodes (corresponding to consecutive samples in time) have weight 2

equal to 1. Choosing equal weights seems to be a good choice if time samples are 3

equally spaced in time. 4

One possible graph choice for this type of signal would be a line graph such as 5

that in Figure 1.3, where all edge weights are equal to 1 and nodes are ordered 6

in time. The graph frequency definitions we will develop in Chapter 4 can be 7

shown to correspond exactly to the discrete cosine transform (DCT), a popular 8

tool for analyzing and representing signals. 9

Alternatively, we could associate the same signal to a circular graph as the one 10

shown in Figure 1.4. This would be equivalent to viewing such a signal as one 11

period of an infinite length periodic signal with period N , the number of nodes. 12

1.2 Graphs and classical signal processing 11

Figure 1.3 Line graph to represent signals in time as graph signals. If all edge weights
are equal to 1 and nodes ordered in time, the frequency representation for these graph
signals will match those of discrete final length time signals.

Listing 1.1 Matlab code used to generate Figure 1.3

1 path10 = grasp_non_directed_path(8);
2 signal10 = [200 10 200 10 200 10 200 10]’;
3 grasp_show_graph(gca, path8,...
4 ’node_values’, signal8,...
5 ’color_map’, ’hot’,...
6 ’value_scale’, [0 255]);
7 ylim([4 6]);
8

9 save_figure(’path8’);

In the first case the graph is almost regular, i.e., same connectivity for each node 13

except the two end nodes, while in the second case (circular) the graph is exactly 14

regular. In the circular graph case, as will be seen in Chapter 4, the transform 15

associated to the graph will be the Discrete Fourier Transform (DFT). 16

Comparing the two representations of the same signal in Figs. 1.3 and 1.4 17

provides a concrete example of how the same signal can be associated to different 18

graphs, leading to different interpretations. When the line graph of Fig. 1.3 is 19

used, the two end points are not connected so that if they have very different 20

values this will have no effect on the smoothness of the signal. Conversely, when 21

the cycle graph of Figure 1.4 is used, those two end points will be connected 22

(corresponding to the connection of consecutive cycles in a periodic signal) and 23

a difference in value between those two nodes will lead to higher variation (less 1

smoothness) in the graph signal. Comparing these two graph choices also reminds 2

us that conventional signal processing also relies on having multiple different 3

representations for the same signal (e.g., DCT and DFT, among many others), 4

with the choice to be made dependent on the specific application. 1

Digital images 2

2D images can also be interpreted as graph signals in a similar way by defining 3

a regular grid graph (e.g., one where each pixel is connected to its 4 immediate 4

neighbors) except at the boundaries, as shown in Figure 1.2. 5

As in the case of line graphs, we can also create a graph that is exactly regular 6

by connecting row line graphs as cycles, so that each row line graph (similar 7

to Figure 1.3) becomes connected as a cycle (similar to Figure 1.4). The same 8

12 Graphs and Graph Signals

Figure 1.4 Cycle graph with the same graph signal as in Fig. 1.3

Box 1.1 1D Signals

• Nodes: one per signal sample

• Edges: only between samples that are neighbors in time

• Degree distribution: regular (each node has two neighbors) or nearly

regular (in the line graph case, the two end nodes only have one

neighbor each).

• Signal: values of each sample in time

• Scale: each finite set of samples can be viewed as a “window” for time

signal analysis

can be done for line graphs corresponding to columns. Thus we connect the left 9

and right nodes of each horizontal line graph, and similarly the top and bottom 10

nodes of each vertical line graph. Assume that pixels are indexed by x(i, j) where 11

i, j = 0, . . . , N −1 then in a 4-connected graph a given pixel would be connected 12

1.2 Graphs and classical signal processing 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.5 Grid graph representing an image from the USPS dataset

to 4 neighbors: x((i+ 1) mod N, j), x(i, (j + 1) mod N), x((i− 1) mod N, j), 13

and x(i, (j − 1) mod N), where the modulo operation wraps the connections. 14

For example, the pixel at the top right corner will have as a neighbor to its 1

“right” the pixel at the top left corner, and its neighbor “above” will be the 2

bottom right pixel. The 2D separable DFT will be associated to that graph. 3

Box 1.2 2D Images

• Nodes: one per pixel

• Edges: only between pixels that are neighbors in space

• Degree distribution: regular

• Signal: intensity (or color information) at each pixel

• Scale: total number of nodes is equal to the number of pixels (typically in

the order of millions)

While signals defined on the graphs of Boxes 1.1 and 1.2 can already be an- 4

alyzed using existing signal processing methods, these examples are still impor- 5

tant. 6

Because tools from graph signal processing exactly correspond to those devel- 7

oped in classical signal processing (for some particular graphs), we can view GSP 8

tools as a “natural” generalization of existing methods. As an example, the line 9

graph of Figure 1.3 leads to a well known transform, the size 8 DCT, used for 10

example in the JPEG image compression standard. But slight changes to those 11

weights lead to different transformations (see Chapter 10). As graphs deviate 12

14 Graphs and Graph Signals

Category Nodes Links Example

Physical networks Devices Communication Sensor networks
Information networks Items Links Web
Machine learning Data examples Similarity Semi-supervised learning
Complex systems System state System transitions Reinforcement learning
Social networks People Relationships Online social networks

Table 1.1 Classes of problems of interest

from the properties of those matching conventional signal processing (e.g., when 13

edge weights are no longer equal), we can observe how the corresponding signal 14

representations change, which provides insights about how the tools we develop 15

adapt to changes in graph topology. 16

1.3 Practical scenarios for GSP 17

As technology for sensing, computing and communicating continues to improve, 18

we are becoming increasingly reliant on a series of very large scale networks: 19

the Internet, which connects computers and phones, as well as a rapidly grow- 20

ing number of devices and systems (the Internet of Things); large information 21

networks such as the web or online social networks; even networks that have 22

existed for decades (e.g., transportation or electrical networks) are now more 23

complex and increasingly a focus of data-driven optimization. In what follows 24

we describe examples of systems that can be understood and analyzed by using 25

a graph representation, and to which GSP tools can potentially be applied. 26

Our aim is not to be exhaustive, but rather to illustrate the wide variety of ap- 27

plications that can be considered. We divide these examples in several categories, 28

as shown in Table 1.1,which we discuss next. 29

1.3.1 Physical networks 1

Physical networks are systems were nodes correspond to physical devices or 2

components, while links between these nodes are a function of distance between 3

nodes or represent physical communication between them. In a transportation 4

network, nodes may represent hubs or intersections, while links could represent 5

roads or train tracks. In an electric network nodes may include power generators 6

and homes, while link would represent transmission lines. In a communication 7

network such as the Internet, each node may be a computer or other connected 8

device, while each link would represent a communication link. 9

As seen in the transportation road network shown in Fig. 1.6, one key feature 10

of these physical networks is that the position of the nodes can be mapped to 11

an actual position. In some cases, e.g., sensor networks, there are no obvious 12

1.3 Practical scenarios for GSP 15

Figure 1.6 Minnesota road network graph

links between the sensors, and thus one may construct a graph as a function of 13

distance. In others, e.g., road networks, a better choice might be to use the edge 14

weights that are based on distance between nodes when following the network 15

(i.e., the distance along the road, rather than the distance between nodes). Fi- 1

nally, in some networks, e.g., the Internet, the exact position of the nodes may be 2

known but may not be key in defining a graph representation. Instead, capacity 3

of communication links may be more important. 4

Box 1.3 Sensor Network

• Vertices: one per sensor

• Edges: only between sensors that are within a certain range of each other

(e.g., radio range)

• Degree distribution: can be regular, k-nearest neighbor graph

• Signal: sensor measurement, for example temperature

• Scale: dozens to thousands of nodes

As a concrete example of a physical system, consider sensor networks, see 5

Box 1.3. A variety of systems can be described as sensor networks. Examples 6

include sets of distributed temperature sensors (indoors or outdoors), surveillance 7

cameras or even devices carried by a number of users, such as cellphones. 8

A sensor network may be deployed to sample information from the real world, 9

e.g., temperature. Thus, the nodes are likely to have a location in space, so that 10

edge weights between nodes can be made a function of the distance between the 11

corresponding sensors, and may even be time-varying. The example of Fig. 1.7 12

16 Graphs and Graph Signals

270

272

274

276

278

280

282

284

286

288

290

Figure 1.7 Sensor network

shows a regional network of weather sensors. Sensors can be deployed at much 13

smaller scales, within a building or on a bridge for example, and measure tem- 14

perature, air quality, vibrations, etc. As a clear consequence of Moore’s Law, our 15

ability to sense, record, store and transmit information has continued to increase, 16

so that sensor networks, now considered components of the Internet of Things, 17

are an increasing part of our everyday life. A main objective of GSP is to develop 18

tools to analyze the large amounts of data captured by these sensing devices. 19

1.3.2 Information networks 20

Organization of information as a network or graph has existed since at least 21

the first encyclopedia, with its entries and cross-references. The Internet simply 22

made this way of organizing information more explicit (and easier to browse). 23

Indeed, one of the most popular sources of information is wikipedia, itself an 24

online version of an encyclopedia. In typical information networks each node 1

represent a item of information (a web page, a wikipedia entry) while (directed) 2

links correspond to linking and cross-referencing between the items. 3

The web can be easily seen as a graph (see Box 1.4, where each page corre- 4

sponds to a vertex, and the graph is directed, since a page can link to another, 5

without the linking being reciprocal. This graph structure has often been used 6

to analyze page content. As an example, we can consider blogs dealing with 7

specific topics (e.g., politics) and establish how they link to each other. Then a 8

graph signal may be created at each vertex (blog) by creating a histogram of the 9

frequency of appearance of certain keywords in that blog. 10

Note that graph-based representations of the Web were at the core of the 11

original PageRank search algorithm at the core of Google, where the essential 12

1.3 Practical scenarios for GSP 17

Box 1.4 The Web

• Nodes: one per webpage

• Edges: between webpages that reference each other

• Degree distribution: highly irregular

• Signal: some metric to characterize a particular webpage or blog (e.g., a

distribution of frequency of occurrence of certain keywords)

• Scale: the number of webpages is estimated to be several billion

idea was that the most relevant pages in a search would be those more likely to 13

be traversed through a random walk of all pages that contain the search term. 14

1.3.3 Learning with graphs 15

Classification is a typical machine learning task, which involves developing algo- 16

rithms that can associate a label to data. For example, we may have a collection 17

of images belonging to some categories (dogs vs cats, say) and we would like 18

to automate the process of determining to which category a new image belongs 19

to. An initial step in this design is to collect a representative set of labeled im- 20

ages, i.e., a training set containing examples of all categories under consideration. 21

Then it is useful to consider the similarity graph associated to this training set. 1

To do this, each image is mapped to a feature vector, which could be formed 2

by the pixel values, or some information derived from the pixel values. In this 3

graph each vertex corresponds to a data point, i.e., one of the images in the 4

training set, and the edge weights are a function of the similarity between two 5

data points, i.e., how similar the two images are the chosen feature space. In a 6

similarity graph with normalized edge weights (maximum value equal to 1), two 7

nodes that correspond to similar images will have an edge with weight close to 1 8

between them. In contrast, two nodes corresponding to two different categories 9

will not be connected, or the edge between them will have weight close to zero. 10

Box 1.5 Learning: Similarity Graph

• Nodes: one per data point used in the learning process

• Edges: between data point as a function of distance in feature space

• Degree distribution: can be regular, e.g., k-nearest neighbor graphs

• Signal: label for each data point

• Scale: The number of nodes corresponds to the size of training set which

could be in the order of millions points for some modern datasets

Graph-based methods have been used for unsupervised clustering, where the 11

goal is to find a natural way to group data points having the same label. Notice 12

18 Graphs and Graph Signals

that if a good feature space has been chosen (and the classification problem 13

is relatively simple) one would expect that when choosing a random node its 14

immediate neighbors on the graph will be likely to have the same label. We will 15

view this as a “smoothness” associated to the label signal, will introduce this 16

notion more formally and apply it to learning in Chapter 8. 17

1.3.4 Analyzing complex systems 18

Many systems of interest can be described by a state variable, such that environ- 19

mental changes or actions performed by a controller will lead to a change in the 20

value of the state variable. If the state variables can only take discrete values, 21

e.g., a counter that registers the number of occurrences of an event and resets 1

to zero, we can create a directed graph that captures all the possible states of 2

the system as well as allowable transitions. We can then consider the problem of 3

controlling such a system (selecting actions to be performed at each state) based 4

on a graph formulation, by associating a “value function” to each node of the 5

graph (state of the finite state machine). 6

Box 1.6 Finite State Machine

• Nodes: one per state

• Edges: between states for which a transition is possible

• Degree distribution: highly irregular

• Signal: some metric to quantify a given state

1.3.5 Social networks 7

In this case there is no notion of distance between vertices. Instead, two nodes 8

may or may not be connected. If they are, the edge has weight one. The graph 9

is undirected since both users agree to “friend” each other. 10

Box 1.7 Online Social Network – Undirected

• Nodes: one per user

• Edges: between users and their friends

• Degree distribution: highly irregular

• Signal: different information associated to each user, such as age, for

example

In this scenario, or in other situations where the goal is to analyze data avail- 11

able from a social network, it may be useful to determine if the connections in 12

1.4 Mathematical models of graphs 19

the graph allow us to predict information. For example, it may be desirable to 13

poll users to gather opinions, but impractical to try to poll everybody. Then, 14

if users who are connected are more likely to have similar opinions, it may be 15

possible to “sample” carefully (polling only some users) to then “interpolate” 16

(infer what connected users may think on those issues given what their friends 17

responded). 18

Online Social Networks – Twitter 19

Here the graph is directed and is generated by linking a user to all his or her 20

followers. These graphs can be particularly irregular. Some users may have mil- 21

lions of followers, while others have a handful, something known as a power-law 22

distribution. The graph connectivity has been used to estimate to what degree 23

some users “influence” others, by for example signals such as the number of mes- 24

sages forwarded (“re-tweets”). For example, one could consider a graph signal of 25

the number of times a message from a given user has been retweeted by each of 26

its direct and indirect followers as a measure of influence. In this case, as in oth- 27

ers, more than one graph can be associated to the data. For example, one could 28

consider the graph connecting hashtags and users who have tweets or re-tweets 29

with those hashtags. 30

Box 1.8 Online Social Network – Directed

• Nodes: one per user

• Edges: from user to other users he/she follows, and from followers to a

user.

• Degree distribution: highly irregular

• Signal: information associated to each user, e.g., geographical location.

1.4 Mathematical models of graphs 1

In this book we mostly consider scenarios where a graph is given and we develop 2

tools to analyze the graph signals on the given graph. Thus while we will consider 3

what is possible for some specific classes of graphs, e.g., bipartite graphs, we will 4

mostly view graphs as being deterministic. 5

In the context of the broad field of Network Science there has been a significant 6

amount of work to develop probabilistic models of classes of graphs, as tools to 7

derive estimates for various graph properties that are valid for those specific 8

graph classes. In particular these models are used in order to develop closed 9

form expressions for node degree distributions (probability that a node has a 10

certain number of neighbors). 11

These random models are given a number of N of nodes and describe the 12

20 Graphs and Graph Signals

Figure 1.8 Erdos-Renyi Graph

Figure 1.9 Watts-Strogatz or Small World graph

probability that two nodes are connected. We briefly some of the most popular 1

among these models, in order to illustrate the basic concepts and link the specific 2

models to some of the concrete examples of graphs considered in the previous 3

section. 4

Erdos-Renyi graphs (see Figure 1.4) are generated selecting a probability that 5

two nodes are connected, and applying this to every pair of nodes. While this 6

mathematical models allows results about connectedness and degree distribution 7

to be derived, these types of models do not represent well the structure present in 8

many real-world networks, in the sense that all nodes exhibit the same behavior. 9

An alternative model that addresses some of the limitations of Erdos-Renyi 10

graphs is the Watts-Strogatz or Small World graph (see Figure 1.9). These models 11

start with a regular graph. First a cycle graph with N nodes such as the one in 12

1.5 Roadmap 21

Figure 1.10 Barabasi Albert or Scale-free graph

Figure 1.4 is created. Then connections are added while preserving regularity. 13

In the initial model of Figure 1.4, each node has exactly two neighbors, then 14

additional links are included so that each node connects to its k closest neighbors 15

in the original cycle. Finally with some low probability connections are added 16

between any two nodes. These additional added nodes provide the small world 17

property, where it is possible to find relatively short paths between any two 18

nodes. 19

Barabasi Albert or Scale-free graphs (see Figure 1.10) are designed to capture 20

properties observed in social networks (e.g., twitter) where a few users have 21

orders of magnitude more followers than others (i.e., with some low probabilty 22

some nodes can have very high degree). Starting with connected network, nodes 23

are added so that they connect to a subset of existing nodes, with the probability 1

of connecting to a given node being a function of the degree of the node. Thus, 2

as nodes are added to the network high degree nodes are likely to increase their 3

degree even further. 4

1.5 Roadmap 5

Our goal in this book is to provide a basic and intuitive understanding of how it 6

is possible to extend to graph signals tools that are standard for regular signals 7

such as: 8

• Filtering 9

• Frequency domain representations and their interpretation 10

• Transforms/Wavelets 11

• Sampling 12

	Part I Graph Signals
	Graphs and Graph Signals
	Graphs and graph signals
	Graphs and classical signal processing
	Practical scenarios for GSP
	Mathematical models of graphs
	Roadmap

